

UW Medicine

Multiple Myeloma: How does it affect organs?

Kara Cicero, MD MPH University of Washington Fred Hutchinson Cancer Center

July 27, 2024

1 "CRAB" Diagnostic Criteria

CRAB?

Multiple Myeloma

Both criteria must be met:

- Clonal bone marrow plasma cells ≥10% or biopsy-proven bony or extramedullary plasmacytoma
- Any one or more of the following myeloma defining events:
 - Evidence of end-organ damage that can be attributed to the underlying plasma cell proliferative disorder, specifically:
 - Hypercalcemia: serum calcium >0.25 mmol/L (>1 mg/dL) higher than the upper limit of normal or >2.75 mmol/L (>11 mg/dL)
 - Renal insufficiency: creatinine clearance <40 mL per minute or serum creatinine >177 μmol/L (>2 mg/dL)
 - Anemia: hemoglobin value of >2 g/dL below the lower limit of normal, or a hemoglobin value <10 g/dL
 - Bone lesions: one or more osteolytic lesions on skeletal radiography, computed tomography (CT), or positron emission tomography-CT (PET-CT)
 - Clonal bone marrow plasma cell percentage ≥ 60%
 - Involved: uninvolved serum free light chain (FLC) ratio ≥ 100 (involved free light chain level must be ≥100 mg/L)
 - >1 focal lesions on magnetic resonance imaging (MRI) studies (at least 5 mm in size)

ASH SAP 8th Editio

MULTIPLE MYELOMA

Calcium Renal impairment Anemia Boney lesions

"CRAB"

• Must be directly related to the monoclonal protein and/or underlying clonal plasma cells

Renal Insufficiency: Light Chain Cast Nephropathy

The Nephron

Images: National Cancer Institute; Leung, J Clin Invest, 2012

Light Chain Cast Nephropathy

Myeloma Kidney

Healthy Kidney

Leung & Rajkumar, Blood Cancer Journal, 2023

Images: National University of Singapore

Clinical Manifestations of Kidney Injury

- Asymptomatic found on routine labs / incidentally discovered
- Swelling
- Shortness of breath
- Frothy urine
- Anemia*
- Decreased urine output
- Nausea
- Loss of appetite
- Weakness & fatigue

Renal Impairment as a Myeloma Defining Event

- eGFR <40 or Cr >2 due to light chain cast nephropathy
- Other causes of AKI must be excluded, for example:
 - Dehydration
 - Diabetes
 - High blood pressure
 - Other plasma cell disorders (i.e. AL amyloidosis)
 - Hypercalcemia*

Levels of involved FLC & Kidney Function

Serum FLC levels (mg/L)

- Since mechanism of kidney impairment is based on excess FLC being cleared through the kidneys, the higher the involved FLC, the worse the renal impairment
- Rare to have light chain cast nephropathy with iFLC <50 mg/dL

Yadav, et al., Blood Cancer Journal, 2020

Renal Impairment as a Myeloma Defining Event

Kidney Biopsy

• May be avoided if:

- iFLC >150mg/dL (higher the iFLC, greater the suspicion)
- Majority of proteinuria Bence Jones (<10% albuminuria)
- No clear alternative etiologies for AKI
- Not the only myeloma defining event necessitating treatment

Management of AKI with Plasma Cell Disorder

Treatment Considerations: Renal Insufficiency

- May be an emergency requiring hospitalization for immediate initiation of treatment
 - Rapid reduction of FLC imperative to renal recovery
 - At least 50-60% reduction in FLC; faster is better
 - Ideally <50 mg/dL by C1
- Plasma cell directed therapy prevents FLC production
- Plasmapheresis (PLEX) ??

PLEX in for Light Chain Cast Nephropathy

Fig. 3. Survival rate of both patient groups calculated by the Cutler and Ederer outcome method. Group I vs. Group II, P < 0.01. Symbols are: (\bigcirc — \bigcirc) Group I; (\blacktriangle — \bigstar) Group II; (\longrightarrow) cumulative.

Fig 4.—Comparison of survival rates for patients treated with plasmapheresis (lines with triangles, n = 11) and a control group (lines with circles, n = 10).

Treatment Considerations: Renal Insufficiency

- May be an emergency requiring hospitalization for immediate initiation of treatment
 - Rapid reduction of FLC imperative to renal recovery
 - At least 50-60% reduction in FLC; faster is better
 - Ideally <50 mg/dL by C1
- Plasma cell directed therapy prevents FLC production
- Plasmapheresis (PLEX) controversial
 - Mixed results in terms of efficacy, but low risk procedure

Anemia

Hematopoiesis

RBC Production

Anemia = Decreased Red Blood Cells

Parameter
Hemoglobin (g/dL)
Hematocrit (%)
RBC count (×10 ⁶ /microL)
MCV (fL)
MCH (pg)
MCHC (g/dL)
RDW (%)
Reticulocyte count (×10 ³ /microL or ×10 ⁹ /L)
Platelet count (×10 ³ /microL)
WBC count (×10 ³ /microL)

Production

- Vitamin deficiencies: B12, folate, iron
- Bone marrow infiltration / dysfunction: multiple myeloma, MDS
- Decreased epo levels: kidney disease
- Chronic inflammation
- Infection
- Congenital disorders
- Medications

Destruction

- Autoimmune hemolysis
- Shearing: heart valves, micro-thromboses
- Splenic sequestration
- Congenital disorders
- Medications

Loss

• Bleeding

Anemia in Myeloma

Production

- Vitamin deficiencies: B12, folate, iron
- Bone marrow infiltration / dysfunction: multiple myeloma, MDS
- Decreased epo levels: kidney disease
- Chronic inflammation
- Infection
- Congenital disorders
- Medications

Destruction

- Autoimmune hemolysis
- Shearing: heart valves, micro-thromboses
- Splenic sequestration
- Congenital disorders
- Medications

Loss

Bleeding

Clinical Manifestations of Anemia

- Fatigue & weakness
- Lightheadedness
- Palpitations
- Shortness of breath
- Headaches
- Pallor

Anemia as a Myeloma Defining Event

- Hgb <10 or Hgb >2 below lower limit of normal due to the underlying clonal plasma cells
- Other causes of anemia must be excluded:
 - Labs: iron/ferritin, B12, folate, TSH, haptoglobin, epo
 - BMbx

Marrow Infiltation by Multiple Myeloma (%)

Treatment Considerations: Anemia

- Correct any other reversible underlying causes of anemia!
- Plasma cell directed therapy eliminates infiltration of plasma cells crowding out the bone marrow
- Erythropoietin stimulating agents
 - Epoetin
 - Darbepoetin
- RBC transfusions

Bone Involvement: Lytic Lesions

Normal Bone Physiology

- Osteoblasts express RANKL -> binding of RANK to RANKL stimulates osteoclast activation
- OPG, decoy receptor of RANKL, inhibits binding of RANK to RANKL

Lytic Lesions in Myeloma

Balance of RANKL vs. OPG determines bone resorption vs. formation

Myeloma cells over-produce inflammatory signals

1. Upregulate RANKL

2. Suppress osteoblastic differentiations

Enhanced bone resorption

30

Teramachi, et al., Journal of Bone & Min Metabolism, 2023

Images: Chang, et al., Exper & Mol Medicine, 2019; Han, et al., Bone Research, 2018

Lytic Lesions in Myeloma

Clinical Manifestations of Bone Involvement

- Bone pain
 - Often precipitated by movement
 - Less common at night, though can occur with change in position
 - Usually involves central skeleton rather than extremities
- Pathologic fractures
 - Neurologic complications
 - Cord compression emergency!
 - Radiculopathy
- Loss of height due to vertebral collapse

Bone Lesions as a Myeloma Defining Event

- One or more osteolytic lesion(s) <a>5mm
 - If only one lytic lesion, then clonal bone marrow plasma cells must be $\geq 10\%$
 - Multiple lytic lesions (confirmed plasmacytomas) with BMPC <10% and no other MDE = macrofocal myeloma
- Other causes of lytic lesions must be ruled out if indeterminate bone biopsy
 - E.g. other malignancies, benign lesions
 - If without significant BMPC involvement but suspecting macrofocal myeloma
- Other bone abnormalities on imaging in absence of lytic lesions are *not* considered a myeloma defining event
 - E.g. osteoporosis, compression fractures, FDG avidity on PET
 - Exception: 2+ focal lesions <a>5mm on MRI = myeloma defining event

First-line treatment with zoledronic acid as compared with clodronic acid in multiple myeloma (MRC Myeloma IX): a randomised controlled trial

Gareth J Morgan, Faith E Davies, Walter M Gregory, Kim Cocks, Sue E Bell, Alex J Szubert, Nuria Navarro-Coy, Mark T Drayson, Roger G Owen, Sylvia Feyler, A John Ashcroft, Fiona Ross, Jennifer Byrne, Huw Roddie, Claudius Rudin, Gordon Cook, Graham H Jackson, J Anthony Child, on behalf of the National Cancer Research Institute Haematological Oncology Clinical Study Group

		Intensive pathway				Non-intensive pathway			
		Zoledronic acid (n=555)	Clodronic acid (n=556)	p value		Zoledronic acid (n=426)	Clodronic acid (n=423)	p value	
	CR, VGPR, or PR	432 (78%)	422 (76%)	0.43		215 (50%)	195 (46%)	0.18	
	CR or VGPR*	200 (36%)	193 (35%)	0.63	Г	85 (20%)	60 (14%)	0-018	
	CR*	78 (14%)	69 (12%)	0.42		39 (9%)	27 (6%)	0.13	
CR-complete response. PR-partial response. VGPR-very good partial response. *Exploratory analyses.									

34

Morgan, et al., *Lancet*, 2010

Treatment Considerations: Bone Involvement

Plasma cell directed therapy

- Eliminates myeloma cells -> re-establishes homeostasis of bone remodeling
- Direct anabolic activity of proteosome inhibitors & daratumumab
- Consider RT if rapid treatment necessary

Bone modifying agents

- Zoledronic acid (zometa) x2 years SOC as part of myeloma treatment, regardless of bone involvement
 - Reduces skeletal-related events
 - ??antimyeloma effects
- Denosumab does not need to be renally adjusted
 - Non-inferior to zometa for reduction of skeletal-related events

35

Morgan, et al., Lancet, 2010; Morgan, et al., Clinc Cancer Res, 2013

Teramachi, et al., Journal of Bone & Min Metabolism, 2023

Treatment Considerations: Toxicities of Bone Modifying Agents

- Osteonecrosis of jaw
 - Dental clearance before starting!
- Severe hypocalcemia (denosumab > zoledronic acid)
- Bisphosphonates
 - Flu-like symptoms
 - Ocular symptoms
 - AKI, proteinuria
- Denosumab
 - Bone pain
 - Nausea, diarrhea
 - Shortness of breath
 - Rebound fractures

Teramachi, et al., Journal of Bone & Min Metabolism, 2023

Bone Involvement: Before & After Treatment

Before treatment

Images: Teramachi, et al., Journal of Bone & Min Metabolism, 2023; Hinge, et al., Haematologica, 2016

Elevated Calcium

Normal Calcium Balance

98% calcium stored within bones

Images: Saleeby, et al., NEJM, 2011

Elevated Calcium in Myeloma

Bone resorption > Bone formation

Mirrakhimov, North American Journal of Medical Sciences, 2015

40

Images: Chang, et al., Exper & Mol Medicine, 2019; Epstein & Walker, Clin Adv Hem & Onc, 2006; Pathology Tests Explained

Clinical Manifestations of High Calcium

• Symptom severity based on both degree of elevation as well as rapidity of increase

Neurocognitive	 Mild: anxiety, mood changes, decreased cognitive function Severe: altered mental status, coma 	
Renal	 Increased thirst & urination (DI) AKI* Kidney stones 	Severe hypercalcemia = emergency
GI	 Mild: anorexia, constipation Severe: nausea/vomiting Pancreatitis 	
Cardiac	Arrhythmia	

Hypercalcemia as a Myeloma Defining Event

- Ca >11 mg/dL or >1 mg/dL above upper limit of normal due to the underlying clonal plasma cells
- Other causes of hypercalcemia must be excluded:

Hypercalcemia as a Myeloma Defining Event

- Ca >11 mg/dL or >1 mg/dL above upper limit of normal due to the underlying clonal plasma cells
- Other causes of hypercalcemia must be excluded:

Rajkumar, AJH, 2022

Treatment Considerations: Hypercalcemia

- Symptomatic / severe hypercalcemia = emergency
 - IV hydration +/- diuretics
 - Calcitonin
 - Inhibits osteoclasts
 - Eliminates Ca through kidneys
 - Zoledronic acid or denosumab*
 - Bisphosphonates:
 - · Inhibits osteoclast-mediated bone resorption, arrests osteoclast development, osteoclast apoptosis
 - Decreases osteoblast apoptosis
 - Denosumab* effective in hypercalcemia refractory to bisphosphonates
 - Antibody against RANKL
 - iHD
- Plasma cell directed therapy restores bone homeostasis

MULTIPLE MYELOMA

Calcium Renal impairment Anemia Boney lesions

Beyond CRAB?

Infections

- Increased risk of both bacterial (seven times) and viral (ten times) infections
- Occurs because of combined effects of:
- multiple myeloma-related immunodeficiency (deficits in humoral and cellular immunity)
- patient comorbidities
- anti-multiple myeloma therapy (steroids, multidrug combinations, drugs that suppress bone marrow function and cellular immunity)

Bone disease

- Up to 80% of patients with multiple myeloma suffer from osteolytic bone disease at diagnosis or at relapse
- Symptoms: bone and back pain; fractures (compression fractures of the spine may cause cord compression)
- Occurs as result of increased bone resorption
 and reduced bone formation

Peripheral neuropathy

- Common in patients with multiple myeloma
 Caused by:
- direct effects of disease (amyloid deposition, reactivity of the M-protein to nerve components, cytokine-mediated nerve damage)
- anti-multiple myeloma therapy (thalidomide, bortezomib)

P)(P

- anti-multiple myeloma drugs can cause or precipitate renal injury (eg, thrombotic
- microangiopathy and tumour-lysis syndrome)

Thank you!