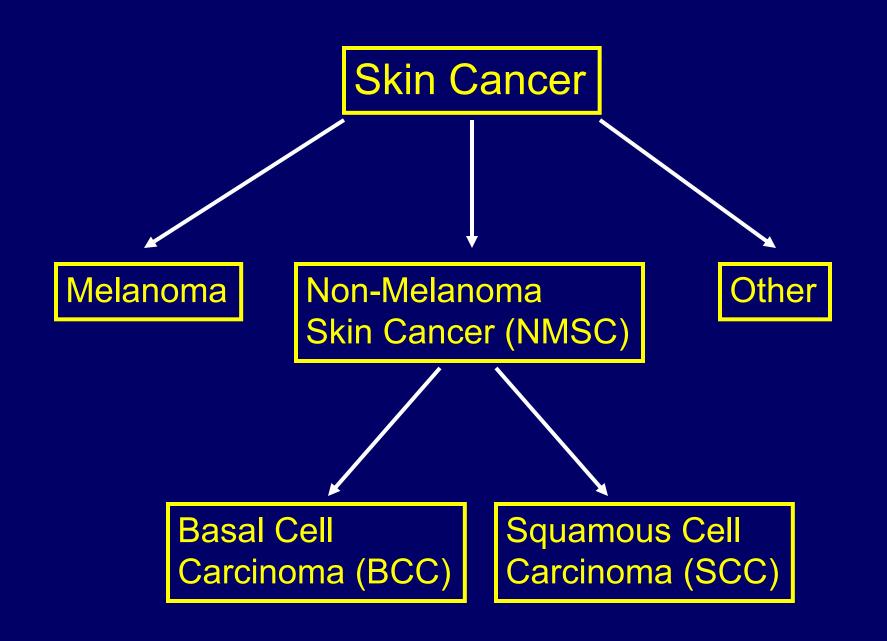
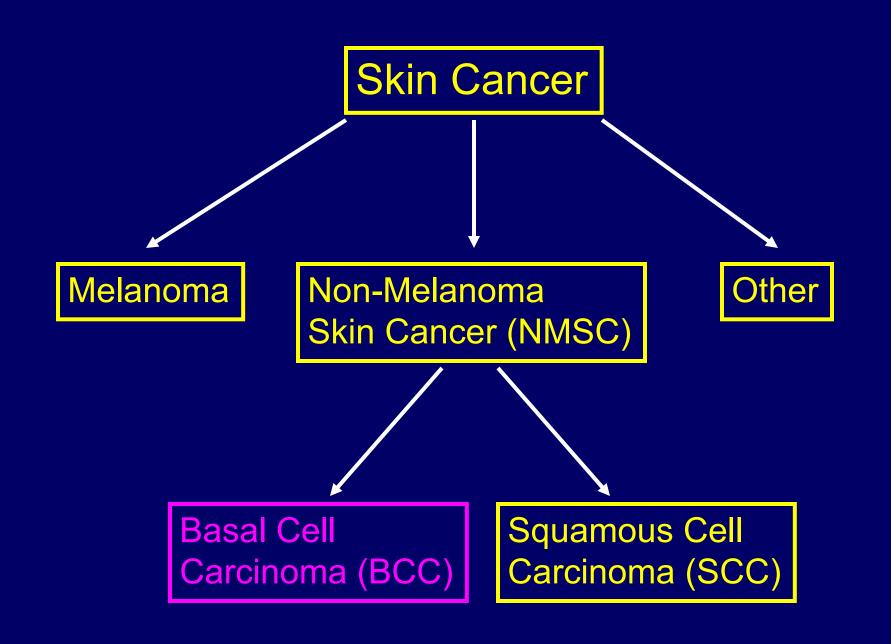
Skin Cancer Basics and How to Protect Your Skin

Ata Moshiri, MD, MPH
Division of Dermatology, University of Washington
Seattle Cancer Care Alliance





Skin Cancer

- 1 in 5 Americans will get skin cancer in their lifetime
- Incidence of epidermal-derived skin cancer:
 - 40% in white people
 - 5% in Latinx people
 - 4% in Asian people
 - 2% in African Americans

Less common in skin of color but associated with higher morbidity and mortality – likely due to delay in diagnosis

Basal cell carcinoma: Epidemiology

- Most common cutaneous cancer*
- 75-80% of NMSC (BCC:SCC ~4:1)
 - Transplant patients have 10x higher risk
- Incidence is increasing!
 - Younger women
 - 21-26 per 100,000 in those < 40 years old

Basal cell carcinoma: Pathogenesis / Risk factors

- UV radiation
- Skin-type
- Ionizing radiation
- Immunosuppression

Subtypes (>26!)

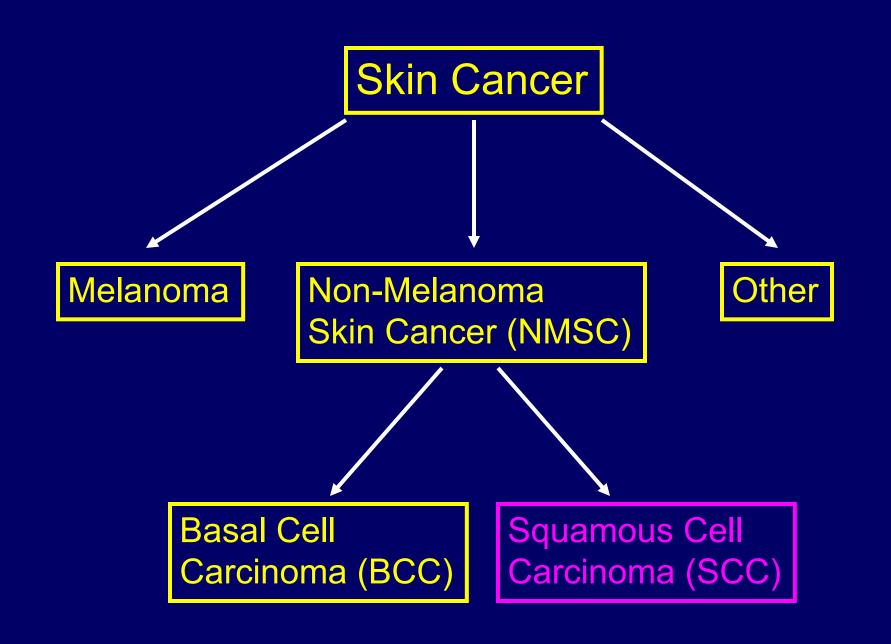
- Nodular
- Superficial
- Pigmented
- Morpheaform/Infiltrative

Basal cell carcinoma: Prognosis

- Rarely metastatic (< 0.1%)
- Locally destructive
- High-risk subtypes
 - Morpheaform
 - Infiltrating
 - "Peri-neural invasion"

Basal cell carcinoma: Treatment

Destruction


 Electro-desiccation and curettage (ED&C) to lesions in non-terminal hair bearing areas

Superficial BCC

- Topical 5-FU (Efudex)
- Imiquimod (Aldara)
- Primary XRT for large lesions

Surgical

- excision with 3-4mm margins
- Mohs micrographic surgery
 - morpheaform/infiltrative, recurrent lesions, high risk H zone, size > 2 cm

Squamous cell carcinoma: Epidemiology

- Second most common type of skin cancer
 - Most common skin cancer in African Americans and Asians
 - * Most common type in immunosuppressed (BCC:SCC ratio is reversed at ~1:4)
 - Risk is increased 65x in transplant patients
- Men > women (~2:1)
- Incidence is increasing (aging population)
- 2500 deaths per year in the United States, ~ 1/3 the number of Americans who die from melanoma annually

Squamous cell carcinoma: Pathogenesis / Risk factors

- UV radiation
- Skin type, geography
- Ionizing radiation
- Chemical carcinogens (e.g. arsenic)
- Immunosuppression
- Chronic inflammation / scarring
- HPV infection periungual, genital

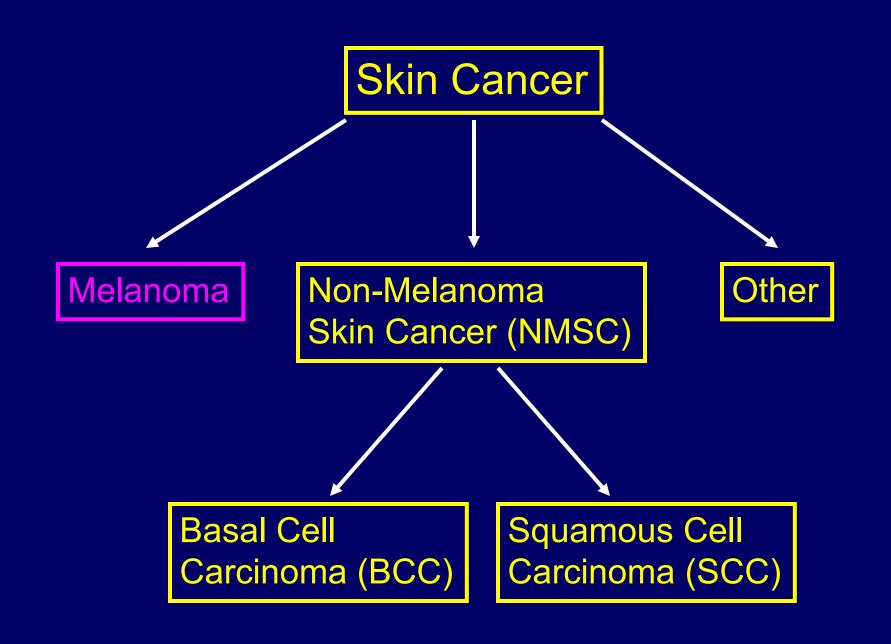
Invasive SCC

- Sun-exposed skin
 -70% head and neck
- Pink or flesh-colored plaque, keratotic papule, or nodule
- +/- scale, crust, erosion, ulceration

High Risk

- HR anatomic sites
 - Ear
 - Lips
 - Mucosal sites
 - vulva
 - penis
- Recurrent SCC
- Arising within scar or chronic ulcer
- Perineural invasion

SCC Treatment


- Destructive
 - XRT
- Surgical
 - Standard excision
 - Mohs micrographic surgery
- Adjuvant
 - -XRT
 - Decrease the dose of immunosuppressive drug
 - Systemic retinoids (prophylaxis only)

SCC Prognosis

- 2-6% rate of metastasis (increases to 10-20% in HR tumors)
 - –Lymph node metastasis = 25-35% survival at 5 years
 - Visceral metastasis < 5% survival at5 years

5 Year Recurrence Rates

Clinical features		
Size≥2cm	15.2	
Location: Ear	18.7	
Locations: Lip	10.5	
Locally recurrent	23.3	
Pathologic factors		
Depth ≥4mm	17.2	
Poorly differentiated	28.6	
Perineural invasion	47.2	

Melanoma: Epidemiology

- Lifetime risk of developing <u>invasive</u> MM (USA)
 - -1930 = 1 in 1500
 - -1980 = 1 in 250
 - -1993 = 1 in 100
 - -2004 = 1 in 65
 - -2010 = 1 in 50
- 4% of all skin cancer, 80% of deaths
- Earlier detection
 - Increased patient education
 - Prognosis for late stage unchanged

Melanoma: Pathogenesis / Risk factors

- UV radiation
 - High-dose intermittent exposure (i.e. "blistering burns")
- Nevi
 - >50 banal nevi
 - Dysplastic nevi
 - Giant congenital nevi (> 20 cm)
- Personal or family history of MM
 - CDKN2A mutation (encodes p16)- familial melanoma
- Immunosuppression
 - 3-4x fold higher risk

Clinical signs of Melanoma

"ABCDE criteria" for melanoma

A = Asymmetry

B = Border irregularity

C = Color variegation

D = Diameter > 6 mm

E* = Evolution (i.e. change over time)

Melanoma Sub-types

- Superficial spreading melanoma
- Nodular melanoma
- Lentigo maligna melanoma
- Acral lentiginous melanoma
- Amelanotic melanoma

Superficial spreading melanoma (SSM)

- Middle age
- Sun-exposed or nonexposed
- Upper back (men) or legs (women)
- Arises de novo > from existing nevus
- "ABCDE" criteria usually fulfilled

Nodular Melanoma (NM)

- Often young adult
- Sun-exposed skin (head, neck, trunk)
- Men > women
- Arises de novo
- ABCD criteria <u>not</u> fulfilled, but lesion Evolves rapidly

Lentigo maligna melanoma(LMM)

- Elderly person
- Sun-damaged skin (face, scalp, arms)
- Tan macule that slowly enlarges and develops uneven pigmentation

Acral lentiginous melanoma (ALM)

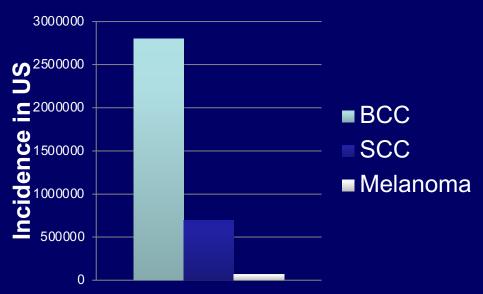
- Most common subtype in African Americans and Asians
- Middle age, M = F
- Foot > hand
- Diagnosis often delayed

Amelanotic melanoma

- Lack of pigment
- Flesh-colored or pink
- Simulates
 - -BCC
 - Pyogenic granuloma

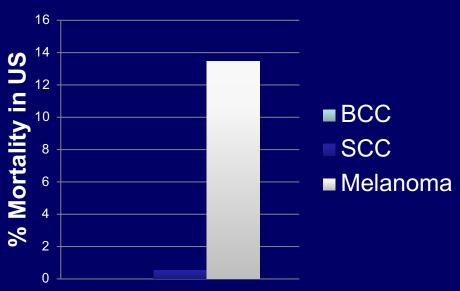
Important Pathology Report Characteristics

- Depth*
- Ulceration*
- Mitosis*
- Regression
- Vertical Growth Phase
- Radial Growth Phase
- Tumor infiltrating lymphocytes (TILS)
- Melanoma subtype


Melanoma Workup

- Full history & physical to look for satellite lesions, lymph node metastasis
- Sentinel lymph node biopsy if tumor depth >1mm, regression or mitoses on histopathology*
- Baseline CXR, CBC, LFT's, and LDH*
- Consider PET/CT scan if there is concern about metastatic disease (e.g. palpable lymph nodes on exam)

Poor Prognostic Factors


- Male gender
- Increasing age
- Increased tumor thickness
- Ulceration
- Head/neck/trunk/axial (vs. extremities)

Incidence of skin cancer in the US

How would the numbers look different for chronically immunosuppressed individuals such as from organ transplant?

Mortality from skin cancer in the US

http://www.skincancer.org/skin-cancer-information/skin-cancer-facts#general

PROTECT YOURSELF!

Sun Protection

- Sunscreen
 - SPF 30 or higher
 - Higher IS better
 - Frequent application
 - Broad spectrum
 - Combo chemical UVA/UVB blockers
 - Physical blockers
- Sun protective clothing/hats

UPF Clothing

Base Tan?

- Indoor Tanning is bad
 - Like smoking for your skin
- Mostly UVA light
 - UVA—immediate skin darkening
 - Transient bronze "glow" to the skin
 - UVB triggers more long term protection

- SPF 1.5-3
- Causes DNA damage, collagen damage etc.
 - It is estimated that indoor tanning causes 419,000 cases of skin cancer each year
 - · Increases risk of melanoma

MYELOMA AND THE SKIN

ORIGINAL ARTICLE

Risk of skin cancer in multiple myeloma patients: a retrospective cohort study

Austin A. Robinson¹, James Wang², Suzie Vardanyan³, Erik K. Madden⁴, Frank Hebroni⁴, Kyle A. Udd², Tanya M. Spektor⁵, Jason D. Nosrati³, Alex Z. Kitto³, Michael Zahab³, Simrin Cheema⁶, Darron H. Fors⁴, Adam Norberg⁴, Joseph Diehl⁴, Gabriel N. Waterman⁷, Regina A. Swift², John Crowley⁸, James R. Berenson^{2,3,5}

Table 3 Cumulative incidence and SIRs of types of skin cancers

Туре	Patients	Controls	SIR (95% CI, <i>P</i> -value)
Any skin cancer	110	60	1.72 (1.43–2.07, <i>P</i> < 0.001)
BCC	52	37	1.32 (1.00–1.72, <i>P</i> = 0.043)
SCC	44	17	2.44 (1.78–3.24, <i>P</i> < 0.001)
NMSC	96	54	1.67 (1.36–2.03, <i>P</i> < 0.001)
Melanomas	9	5	1.69 (0.83–3.11, <i>P</i> = 0.109)
Unknown	5	1	_

Brief report

A review of second primary malignancy in patients with relapsed or refractory multiple myeloma treated with lenalidomide

Meletios A. Dimopoulos,¹ Paul G. Richardson,² Nancy Brandenburg,³ Zhinuan Yu,³ Donna M. Weber,⁴ Ruben Niesvizky,⁵ and Gareth J. Morgan⁶

In a retrospective pooled analysis of 11 clinical trials of lenalidomide-based therapy for relapsed/refractory multiple myeloma (MM; N = 3846), the overall incidence rate (IR, events per 100 patient-years) of second primary malignancies (SPMs) was 3.62. IR of invasive (hematologic and solid tumor) SPMs was 2.08, consistent with the background incidence of developing cancer. In a separate

analysis of pooled data from pivotal phase 3 trials of relapsed or refractory MM (N = 703), the overall IR of SPMs was 3.98 (95% confidence interval [CI], 2.51-6.31) with lenalidomide/dexamethasone and 1.38 (95% CI, 0.44-4.27) with placebo/dexamethasone; IRs of nonmelanoma skin cancers were 2.40 (95% CI, 1.33-4.33) and 0.91 (95% CI, 0.23-3.66), respectively; IRs of invasive SPMs were 1.71 (95% CI,

0.86-3.43) and 0.91 (95% CI, 0.23-3.66), respectively. The risk of SPMs must be taken into account before initiating lenalidomide treatment. In the context of the observed survival benefit in relapsed or refractory MM patients, the benefit/risk profile of lenalidomide/dexamethasone remains positive. (*Blood.* 2012;119(12): 2764-2767)

Brief report

A review of second primary malignancy in patients with relapsed or refractory multiple myeloma treated with lenalidomide

Meletios A. Dimopoulos,¹ Paul G. Richardson,² Nancy Brandenburg,³ Zhinuan Yu,³ Donna M. Weber,⁴ Ruben Niesvizky,⁵ and Gareth J. Morgan⁶

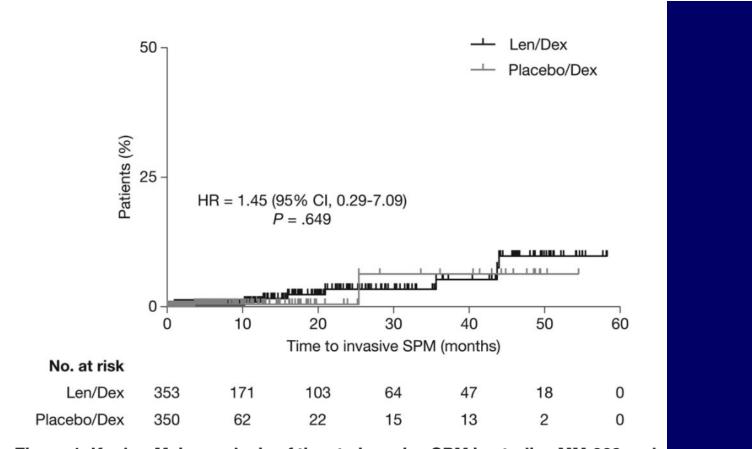


Figure 1. Kaplan-Meier analysis of time to invasive SPM in studies MM-009 and MM-010. Analyses are based on the safety population (n = 703). HR indicates hazard ratio.

Seminars in Oncology

journal homepage: www.elsevier.com/locate/ysonc

Cutaneous manifestations of multiple myeloma and other plasma cell proliferative disorders

Manisha Bhutani^a, Zainab Shahid^a, Alicia Schnebelen^b, Daisy Alapat^b, Saad Z. Usmani^{a,*}

Spectrum of well-recognized cutaneous manifestations associated with multiple myeloma and other plasma cell disorders.

Principal mechanism	Disorder
Malignant plasma cells infiltration	Plasmacytomas
Amyloid fibrils deposition	AL amyloidosis
Paraprotein deposition	Cryoglobulinemia
	Schnitzler's syndrome
Fibrosing dermopathies	Scleromyxedema
	Scleredema adultorum
Biologic activity of paraprotein, with anti-LDL activity	Necrobiotica xanthogranuloma Xanthomas
Abnormal cytokine secretion	POEMS (Polyneuropathy, Organomegaly, Endocrinopathy, Monoclonal protein, and Skin changes)
	AESOP (Adenopathy and Extensive Skin patch Overlying a Plasmacytoma)
Unknown mechanisms	Acquired cutis laxa
Treatment-related	Infections
	Drug reactions

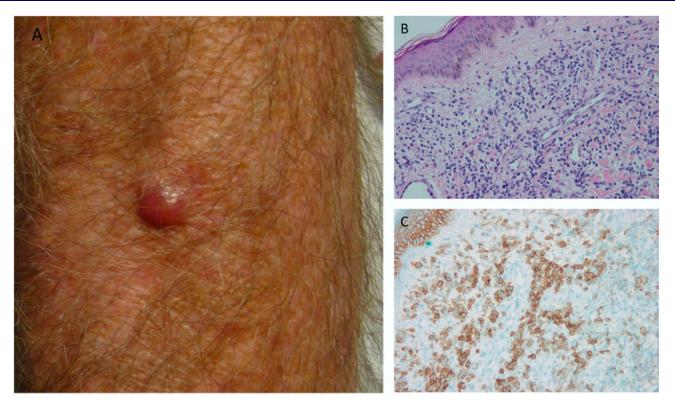


Fig. 1. Cutaneous plasmacytoma. (A) A pink firm papule in a patient with systemic myeloma. (B) Dermal infiltration of malignant plasma cells, which show strong immunohistochemical staining for CD138 (C).

Fig. 2. Nodular amyloidosis with reddish brown and skin-colored firm papules and nodules on the leg.

Fig. 3. Pinch purpura in a patient with AL amyloidosis. Black arrows indicate purpuric macules.